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FLOW PAST A PLATE AT HIGH SUPERSONIC VELOCITIES

V. I. Kholyavko

(Khar'kov)

In accordance with the analogy of an "explosion
wave" the problem of high supersonic flow past
bodies reduces to studying the gas movement in
the transverse plane.

The problem of a flat explosion is equivalent
to symmetrical flow past a flat blunt plate. The
solution of this problem has a particularly simple
form if we disregard the effect of the initial
pressure (self-similar solution of the problem of
a "strong explosion" [i]).

The problem of a flat explosion with subsequent
movement of the piston corresponds to flow past
a flat blunt plate at an angle of attack. In this
case, even if we disregard the initial pressure the
problem is significantly complicated, and its
precise solution is possible by numerical methods.

The approximate solution of this problem can be
carried out if it is limited to small angles of
attack when blunting of the plate exerts the
determining influence on the nature of the flow.
Additional influence due to rotation of the flow
on the plate (piston movement) is determined from
the equation for a shock wave.

We note that an approximate solution to the
analogous problem of flow past a blunt wedge was
obtained by G. G. Chernyy [21 by an expansion of
the flow parameters into series of powers of
(7 - i)/(y + I), where y is the ratio of specific
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heats. The solution of the problem concerning
flow past a blunt plate at an angle of attack
by a method of small disturbances has been
given [3J.

L. We will introduce an equation for determining the position

of a shock wave. For this we will use integral ratios of the lavi

of conservation of energy, momentum, and mass, applying them to a

v ,ume of gas enclosed between the piston (surface of the body) and

the shock wave.

If we assume that the width of the gas layer is equal to unity

and disregard the initial pressure, the indicated ratios have the

form:

R n R 2

S (u' + P-) dr = E + pr*dit. P= -" pudR pdr (i)

Here E is the energy released during the explosion;

p is the density;

p is the pressure;

u is the velocity of the transverse gas flow;

y is the ratio of specific heat;

r0 and R are the positions of the piston and shock wave at time t.

We will indicate parameters on the piston (surface of the body) by

the subscript 0, the undisturbed gas by the subscript 1, and the

parameters immediately behind the shock wave by the subscript 2. The

dot over r0 and R represents differentiation with respect to t.

The solution of system (i.i) can be carried out by using some

distribution of parameters in the transverse layer between the piston

and the shock wave [41.

Let us now turn to the third equation of (i.i). It follows

from this equation that regardless of what law of density distribu-

tion in the transverse layer p(r) is taken, the magnitude of the
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integral on the right side will remain constant. In particular,

this will also be the case if the entire gas mass is concentrated

about the shock wave [2,41.

In this limiting case the density distribution can be represented

in the following form:

p (r) = pIR8 (r - R)

where 6(r - R) is the Dirac function (delta-function).

After this it is not difficult to determine the following

integrals from System (i.i)

n 
(u. _l 2 l.d. ,).-. d, R

where u2 is the velocity behind the shock wave [i1.

Disregarding the pressure change across the layer [2] we will

also calculate the integral

z?

If we now substitute these approximate relations into the first

and second equations of (i.i), we then obtain the pressure on the

piston (surface of the body)

PO- (+ -L ¢ R" m (1.2)

the equation for determining the position of the shock wave

2 ' R1 + 2- - ro ("
2 + Ri) = (T -- - 1) ; R dt

+'-'-T ~2 p, + r-)0o( -JfOt 13

In a case of a flow past a plane at an angle of attack, r 0 =

aVt (V is the incident-flow velocity; a is the angle of attack;

for the upper surface the value a is taken with the minus sign) and

Eq. (i.3) assumes the following form:
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I I - 1J+ ±lit-~. = 2.k + (R-j)iVR= (.2+4)

2. We will examine the particular cases of solving Eq. (1.4).

After setting a - 0 we obtain a solution of the problem of a "strong

explosion" (R = R0 ) which corresponds to symmetrical flow past a

blunt plate

From this,

[o (r + 1)1(¢r- 1',E ,, , (2.1), -1 J ) ,

and the pressure magnitude according to Eq. (1.2)

P = I9- 3T ), (,)(2.2)

In order to now obtain flow past a flat blunt plate it is sufficient

to substitute into Eqs. (2.1) and (2.2)

-L C. LC-'-_, 't = "

where Cx is the blunt drag coefficient, d is the thickness of the

plate; as a result we obtain

RO ( ) T1 AC%(2.3)
16 . - 4 ) " ,

P a [ 2 ( r +- ; ) (T -- t ) " % ( 2 .4 ) -'=h- L-" (3'r- I)- d =/z 2

Formulas (2.3) and (2.4) coincide with the solutions obtained

by G. G. Chernyy [2]. This same work gives a comparison with the

calculations by a precise theory of a "strong explosion."

We can show that (2.1) is the solution of Eq. (1.4) not only

when a - 0 but as well as for any other a 0 if the limiting case

t-+ 0 is considered.
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In another limiting case t-+ o the solution of Eq. (i.4) and the

pressure magnitude have the following forms, respectively:

i2, ' (2.5)

The pressure magnitude determined by (2.5) coincides with the

exact solution for a tapered plate.

Thus, if close to the leading edge of the blunt plate (t - x/V-,

- 0) the flow is determined mainly by blunting, then far downstream

(t-+ c) the effect of blunting diminishes and the pressure magnitude

tends toward the value occurring at a tapered plate.

In order to obtain a solution to (:L.4) for small but finite t,

we assume that R = R0 + Ri, where R2 is defined (2.L) and Ri is the

addition due to rotation of the flow (piston movement). Here no

assumptions are made relative to the magnitude of R,; however the

following conditions must be satisfied: i) when t- 0, R1-, 0 and

the pressure magnitude should tend to a value (2.2); 2) the appear-

ance of additional magnitude Ri is connected only with the presence

of an angle of attack (piston movement); in other words, parameter

a should definit'ely enter into the solution of Ri.

If we now assume Ri ~ t m and set R - R0 + Ri into Eqs. (1.2)

and (i.4), we find that the first condition will be fulfilled when

m > 2/3, and the second when m > 5/6.

Leaving in converted equation (i.4), i.e., after substitution

of the relation R = R0 + Ri into it, the terms containing t to

the lowest power (when m > 5/6 these will be the terms with t / 3

and tm-2/3),we obtain an approximate equation for determining Ri

-5-, + 1 IT ( ) (2.6)
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"he equation under consideration is an Euler equation with the

right side 151.

The general solution of this equation has the following form:

c1t ' +ct' + -r'?

where C, c2 are arbitrary constants, mi, m2 are roots of the charac-

teristic equation,. and Ri is the particular solution of (2.6).

Solution of Eq. (2.6) leads to negative values of m. and m

(b > 1) and, therefore, in order to satisfy the boundary conditions

it is necessary to assume that c. = c 2 = 0.

Thus, only the particular solution of (2.6) remains. It is

not difficult to see that it will be as follows:
R11 (+ 1) (3T-,-2) altr~

2 (7 T - 1)

Finally, the solution of Eq. (1.4) for small values of t has

the form

R[ (T+W(-) j.( j" + (rT- )(3-, (2.7)

By substituting

2 Z 2 =- -d, t -.

Formula (2.7) is reduced to form

2 i 3-'(- 1 z (z)]v 2 (7y - 1) 2 z Wx(II) LT -L (2.8)

exd

It is completely obvious that the obtained solution of (2.7) or

(2.8) is correct not only during flow past a blunt plate at an angle

of attack, but also, e.g., during symmetrical flow past a blunt wedge.

Figure I shows the comparison of results of calculation by

Formula (2.8) (dashed line) with the solution of G. G. Chernyy (y - 1.4)
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for a case of flow past a blunt wedge [2] (on the ordinate axis

X(R) - 2z(R).

Using (2.7). we determine by Formula (1.2) the pressure on the

surface of the blunt body

Tpo
-1 1  ~ (z''"h + , ()z-'. + A (2.9)

Here

, (), T + 1) (T - 1), Z5 r = 2 (T + W (T- 1 '/,.

_______ -r --E~rr
3 ( T + 1) P - 2) 3 z t  a- x 3 - )

2 (Tr - 1)2 - d ,

1 ~6011.F

L v 4 rv

__ __ __ z S/0 z /7 4.i l

Fig. i. Fig. 2.

In particular, for y = 1.4 the following result is obtained:

p= - O.z-/+ 0.206-/ + 0.075 (2.10)

For comparison let us introduce the formula which was obtained

[3] by the method of small disturbances:

P- 0.085 /. - 0.194z-'/, (2.11)

Figure 2 shows the results of calculations by Formulas (2.10)

(dashed line) and (2.11) (solid line). The small circles and the

small dashes indicate Bertram's data which he obtained by the method
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characteristics for a - 50, i0°, with M. - 20 [3].

3. Let uq turn to determination of the aerodynamic characteris-

tics of a flat blunted plate with flow-past at high supersonic veloci-

ties at small angles of attack a.

In accord with Formula (2.9) the coefficients of relat':.....

at the lower and upper surfaces are determined by tLe following ra.o:

P.,. .6.. C.%(7 2/, (* r .'A (7 + 2/.) ~ (3 ±)Q

-p M 2 "T'8 ' ) + 2/1 0 (3.2)

From (3.2) it follows that on the uroc:- ; 6'faca th' i ...

exists such a point 0, at which the pressure will be equal to zero.

From physical considerations this point can be examined as a

point in which breakaway occurs. If we disregard the third term as

a small magnitude compared with the other terms, from (3.2) we obtain

9 () (-1)(7T- 1? C (3.3)
So Cr (: + 1) PT- - 1) (37 -z) 2P

•~~~ Y'.- I
DO Break*~L- 1.7pil4 1

Pig. 4.

Figure 3 shows the dependence

- (3.3) when -y 1.4 andc x - 1.84

j (flat nose). As is evident from

Fig. 3, with an increase of the
Fig. 3.
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angle of attack the breakaway point moves forward toward the leading

edge of the plate. At large angles of attack the breakaway point is

located on the leading, edge, and the pressure on the whole upper

surface will be equal to zero. A similar phenomenon occurs during

flow past a plate according to the Newton system.

If we limit ourselves to an examination of such angles of attack

for which point 0 is positioned behind the plate, then the lift coef-

ficient is defined as:
1

Cy ( - P)d = 6/2 (r) )"
0 dU

Here b is chord and d is the thickness of the plate.

We obtain the total lift coefficient if the pressure on the

leading part of the plate is taken into consideration:

= [6/h (T)C. )'- . (3.4)

Figure 4 shows the dependence (3.4) constructed for y = i.-1 and

Cx = 1.84 (curve i). For comparison, we have: the lift coefficient

of a blunt plate obtained without taking into account the effect of

blunting on flow past a plate (curve 2):

Cv= (T+ ) 2 _M

the left coefficient of a tapered plate (curve 3)

cy, = ("y. I

As was to be expected, at large angles of attack the effect

due to bluntir diminishes and the characteristic cy - f(a) of a blunt

plate approximates those values obtained for a tapered plate.

The coordinate of the, center of pressure X on the flat blunt plate

relative to the leading edge is defined by the following expression
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1 p (3.5)

0 u

Thus, due to blunting the pressure center of a plate shifts

forward. With an increase of the angles of attack the pressure center

will move into a position corresponding to a tapered plate.
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